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Abstract

This report serves as documentation of a pre–study carried out in order to evaluate 

the basic capabilities and limitations of a GetSpec spectrometer, equipped with a 

SentroHead measurement head, in an intended application of characterisation of 

wooden biofuels. For this application, the main interest would be to determine the 

moisture content and the energy content of the fuel. This research on characterisation 

of wooden biofuels utilising near infrared spectroscopy, of which this report constitutes 

the first part, aims to enable the determination of the correct economical value of a 

batch of wooden biofuel, at the instance when the batch arrives at the power plant. 

However, it should be clearly pointed out that this report is a documentation of the 

pre–study for the intended application. Therefore, it contains basic sample handling 

considerations and simplified measurement setups, rather than measurements of wood 

chips at a power plant facility. This study addresses issues such as the heating of the 

sample that the light source causes, the speed of which water evaporates from a sample 

in a normal laboratory environment, to what extent the measurement can distinguish 

between birch, pine, and spruce, and how a reasonable PLS model for the moisture 

should be built. 

List of abbreviations

• NIRS Near InfraRed Spectroscopy

• PC  Principal Component

• PCA  Principal Component Analysis

• PLS  Partial Least Squares

• RMSEC Root–Mean–Square Error of Calibration

• RMSECV Root–Mean–Square Error of Cross–Validation

• RMSEP Root–Mean–Square Error of Prediction

• SEP  Standard Error of Performance
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1. Preface

Near InfraRed Spectroscopy (NIRS) is a very flexible measurement method, and 

the number of application areas is huge. This report will serve as a basis for an 

application that characterises wooden biofuel. The application aims to determine the 

moisture and energy content in wooden biofuels. This will allow the energy company 

to determine the correct value of a shipment of biofuel, and the information might 

also have an impact on the operation of the power plant. The wooden biofuel used 

in Finland originates from various parts of the tree (from root to needle in the case 

of conifers), and from different species. Therefore, not only the moisture content 

but also the volumetric energy content can vary significantly. Thus, determining the 

value of a shipment is important. However, current methods can be described as time 

consuming and costly, and only a fraction of a shipment or lot can be analysed. This 

is the background to why NIRS is of interest in this field. Correctly positioned on a 

conveyor belt, a NIR instrument could potentially scan the “whole” shipment, and 

thereby enable the calculation of a very accurate average value of the moisture and 

energy content. 

The present report deals with practical aspects and findings, valuable in particular 

from a measurement implementation point of view. As this report deals with practical 

aspects rather than novel scientific findings, very little effort is put on relating the 

results to results by others reported in the scientific literature. It should, however, be 

pointed out that NIRS has been used quite extensively in context similar to what is 

reported here. In a fairly recent review paper, for instance, Tsuchikawa (2007) lists 146 

publications defined as “Recent Near Infrared Research for Wood and Paper”. Thus, 

for people interested in this field of research, there is very much material available to 

retrieve valuable information from.
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1.1 INSTRUMENTATION AND SOFTWARE

The spectroscopic measurements accounted for in this report were carried out with a 

with a GetSpec spectrometer, model #: NIR-256L-1.7T1. This diode array instrument 

has an Indium–Gallium–Arsenide (InGaAs) detector with 256 elements. The spectral 

range is 900–1700 nm with 3.125nm/pixel linear dispersion, and the Full Width 

at Half Maximum (FWHM) is 6.25 nm. The spectrometer was equipped with a 

SentroHead measurement head. This reflection measurement head with fibre optical 

connection and integrated light source features a large measurement spot that enables 

measurement of inhomogeneous samples. The light is transported to the detector via 

seven circular positioned fibres in an angle of view of 25°. The spectra were collected 

as absorbance spectra from 905 to 1682 nm, at a step size of 3 nm using the Spec32 v. 

1.5.6.8 software as interface. All spectra consisted of 32 co–added scans. The Partial 

Least Squares (PLS) models were calculated using the PLS_Toolbox v. 5.0 together 

with Matlab R2008b.

1.2 DEFINITIONS OF MODEL AND PREDICTION ACCURACY 

The accuracy of a measurement is usually described as a “standard error of prediction”, 

and the abbreviation SEP is also common. However, the use of this variable in 

various reports and publications can be described as somewhat careless, and some 

concern should be taken when evaluating the findings in literature. In this report, 

the measurement accuracy has been described as a “Root Mean Square Error of 

Prediction”. This error is defined as (Esbensen, 2001):

Equation 1.1

In equation 1.1 y
i
 is the correct value of the studied quantity and ŷ

i
 the measured value,  

and N is the number of samples or comparison points. However, the accuracy is 
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sometimes also given as a “Standard Error of Prediction”, defined as:

Equation 1.2

The correct definition of SEP is, however, as given in Esbensen (2001).

Equation 1.3

It should be pointed out that Esbensen calls this error “Standard Error of 

Performance”, but “Standard Error of Prediction” is also common. The term “Standard 

Error of Estimate” is also widespread, but this refers to the definition given in equation 

1.1. 

The BIAS is defined as: 

Equation 1.4

Thus, if the bias approaches zero, SEP approaches RMSEP. This is hopefully the case 

in many measurement applications, but it should be pointed out that RMSEP and SEP 

are not the same variable by definition, although it seems that they are commonly 

referred to as identical. 
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Whereas the RMSEP value describes the performance of the model on independent 

data, i.e. the validation data, the ability of the model to fit the regression data (also 

commonly referred to as training data) is usually given as a form of “Standard Error 

of Calibration”. Again, it seems to be some discrepancy regarding how this error is 

defined. The most common definition is perhaps, as given in Næs et al. (2002) that 

the “Root Mean Square Error of Calibration” (RMSEC, or sometimes SEC) can be 

calculated as:

Equation 1.5

In equation 1.5 ŷ
i
, y

i
, and N are defined the same way as in equation 1.1, but in this case 

they represent the training data. In PLS model regression k stands for the number of 

PLS components. Thus, an error defined in this way is penalised when the number of 

PLS components increases. However, also in PLS model applications the “Standard 

Error of Calibration” (SEC) can also refer to the following definition:

Equation 1.6

According to equation 1.6, there is no penalty on increasing the number of PLS 

components. Therefore this error will typically decrease as the PLS components 

increases, although the added components might not be relevant according to other 

definitions of model goodness. This definition appears to be the one used in the PLS_

Toolbox for the parameter RMSEC as well. A perhaps more useful parameter than SEC 

as defined in equation 1.6 is the “Root Mean Square Error of Cross Validation”, and is 
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defined as (Næs et al., 2002):

Equation 1.7

This is the definition that is used in the Matlab PLS Toolbox as well. In equation 1.7 

ŷ
i
 is the value obtained with a model that is not regressed on data from sample i. 

Alternatively segments of samples can be removed from the training data. However, 

the most useful feature with a calibration error defined as in equation 1.7 is that the 

model prediction for each sample is obtained with a model that has not been trained 

or regressed on this sample. As a result, RMSECV typically has a minimum at some 

number of PLS components. Models with fewer components than this cannot fit the 

data sufficiently, and the PLS components above the minimum represents over–fitting 

of the training data. 

 

1.3 DEFINITIONS OF MOISTURE CONTENT

The moisture content is in this report given in the unit percent, more specifically in the 

unit mass–percent. Although this definition clearly distinguishes it from, for instance, 

molar–percent or volume–percent, the definition is not definite only by stating that it 

is a mass–percent. Depending on if the weight of water is compared to the total weight 

of the sample or to the dry weight of the sample, the moisture content in mass–percent 

can either be defined as:
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Equation 1.8

or

Equation 1.9

In equation 1.8 and 1.9, the variable m
wet

 represents the total weight of the sample 

and m
dry

 the dry weight of the sample. In this study the moisture content is defined 

according to equation 1.8. This definition is used, for instance, to describe moisture 

content in coal. On the other hand, moisture content as defined in equation 1.9 is used 

in geotechnics. For wood, the moisture content is usually expressed as in equation 1.9, 

with the dry weight given as oven dry weight (Siau, 1984). Thus, the values shown in 

this report will be slightly different to values in many other reports or publications 

dealing with moisture in timber. 
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2. Basic sample handling considerations

2.1 HEAT GENERATED BY THE LIGHT SOURCE

The light source of the NIR–instrument generates a considerable amount of heat, 

which heats the measurement head, the air between the sample and the optical 

fibres transporting the light to the detector, as well as the sample. Ideally the spectra 

should be collected when both the sample and the instrument are stable, but practical 

considerations can make this an infeasible approach. The following is a presentation 

of measurements performed to evaluate the effect of the heat generated by the light 

source on the stability of the measurement.

2.1.1 TEMPERATURE MEASUREMENT

Although the magnitude of the temperature rise that the light source causes do not 

directly translate into how much the actual NIRS measurement is affected from this 

temperature rise, it was investigated how quickly, and to what extent, the temperature 

rises when the light source is switched on. This information can be of particular 

interest in an application with a temperature sensitive or instable sample. In this 

experiment the SentroHead was placed on a well insulating material, and the light 

source was switched on. The temperature inside the cylinder of the measurement head 

was measured and recorded during a three hour period. The results are shown in figure 

2.1. 



13

C H A R A C T E R I S A T I O N  O F  W O O D E N  B I O F U E L S  U S I N G  N E A R  
I N F R A R E D  S P E C T R O S C O P Y — A  P R E – S T U D Y

Figure 2.1. The temperature inside the SentroHead as a function of the 

operation time of the light source. The first seven measurement points are 

spaced one minute apart.

As can be seen from figure 2.1, there is a rapid temperature increase for approximately 

five minutes. After roughly one hour the increase in temperature displays a linear 

behaviour. Therefore, during this three hour period the temperature cannot be said 

to stabilise fully. This measurement can be described as the worst case scenario in 

terms of time required to obtain temperature stability, since the SentroHead was 

placed on an insulating material. Therefore, the heat generated by the light source 

could essentially only be transported to the surroundings through the cylinder of 

the measurement head itself. At least it seems appropriate to assume that if the 

SentroHead was placed on a material that have a higher heat conductivity, the 

temperature at which the temperature stabilises will be lower, and, thus, the time 
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to reach this temperature shorter. However, this measurement indicates that the 

increase in temperature can exceed 20°C, which, depending mostly on the nature of 

the sample, can be a significant factor to take into consideration. Furthermore, in the 

case of an insulating material, for instance wood, it might not be useful to wait for the 

temperature to stabilise. 

2.1.2 ABSORBANCE MEASUREMENT

It was concluded, based on the measurements described in chapter 2.1.1, that it 

unlikely that the heating effect of the light source on the measurements can readily 

be ignored. Therefore, the next step was to evaluate this effect on the spectral level. 

For this study the instrument and the light source was allowed to stabilize for one 

hour before the measurement was started. Then absorbance spectra were collected 

on a piece of board (volume ~480 cm³) of Norwegian Spruce. The first absorbance 

spectrum was collected directly after the SentroHead was moved onto the board–piece. 

After this one spectrum was collected every minute for ten minutes, where after the 

spectra were collected at longer time intervals. Figure 2.2 shows a number of the 

absorbance spectra collected.
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Figure 2.2. Absorbance spectra of spruce, collected during a two hour period 

in order to evaluate the effect of the heat generated by the light source on the 

spectra.

As can be seen from figure 2.2, there was a clear differentiation between spectra 

collected early on in the measurement, compared to those collected at the end of the 

experiment. In an attempt to quantify and simplify the visual interpretation of the 

results, the relative absorbance at 1646 nm was calculated and plotted against the 

illumination time of the sample. Also the time derivative of the change in absorbance 

at 1646 nm was calculated. These results are shown in figure 2.3. 
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Figure 2.3. The relative change in absorbance at 1646 nm and the time 

derivative of this change versus sample illumination time. The change in 

absorbance is here contributed to the change in temperature generated by the 

light source.

The conclusions that can be drawn from figure 2.3 are similar to that from figure 

2.2, i.e. the temperature takes a long time to stabilise. Furthermore, the effect of the 

change in temperature is significant, based on the fact that a four percent change in 

absorbance at 1646 nm was observed in this study. This does not necessarily translate 

into a four percent measurement error in the components of interest, but as such 

the temperature effect can not be ignored. Based on the results from this study, the 

following conclusions were made. Since the temperature effect cannot readily be 

ignored, and the time required before temperature stability is reached is considerable, 
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it seems appropriate to suggest that the measurement should be performed 

directly after the sample is placed under the SentroHead, and the sample removed 

directly after the measurement has been performed. This seems to be the optimal 

measurement practice, and, considering that the measurement time for a 32 co–added 

scans spectrum is roughly 8 seconds, the temperature effect should not be a significant 

contributor in the spectral information.

2.2 THE EFFECTS OF SAMPLE INHOMOGENITY.

One major factor in characterising wood–based fuels with NIR–spectoscopy should be 

the ability to differentiate species of trees commonly found if Finland from each other. 

As a rule of thumb, common species in Finland have roughly the same energy content 

measured in kJ/kg, but a significant difference is found when the energy content per 

volume is compared. Thus, if the instrument is capable of determining the composition 

of a fuel sample in terms of which species makes up the sample, and to what relative 

amount, it seems probable that the energy content can be estimated as well. However, 

a particular specie is perhaps not a well defined concept in terms of its corresponding 

fingerprint in the NIR–region. The following experiment was conducted in order to 

evaluate the minimum discrepancy that can be expected for Norwegian spruce.

The experiment was carried out as follows. Five locations, with no knags, on a 

roughly one meter long board of Norwegian spruce were selected. A spectrum was 

collected from every location, after which the procedure was repeated four times. This 

way the repeability of the measurement compared to the variations due to the location 

on the board could be evaluated. An average spectrum was computed for every location 

and the standard deviation between the average spectra from the five locations was 

computed for each point in the spectra. A similar standard deviation was computed for 

the five spectra from each location. The results are shown in figure 2.4.
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Figure 2.4. The standard deviation computed for each point in the spectra in 

order to compare the deviations arising from repetition of the measurement 

to the one arising from different measurement locations.

The results displayed in figure 2.4 suggest that there was a well detectable discrepancy 

between the locations on the board. The deviation between the locations can be said 

to be approximately 20 times higher to the deviations arising from the repetition of 

the measurement. Furthermore, the deviation between the locations is higher for 

lower wavelengths, which indicates that the information regarding the variations in 

the composition of the sample is mainly found at the lower wavelengths. A Principal 

Component Analysis (PCA) was also performed on the spectra. This showed that 

99.99 % of the variance was explained by the first principal component. Based on this, 

it can be concluded that the deviation observed between the different measurement 
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locations was due to changes in one particular spectral feature, rather than random 

events. On the whole this study showed that in order to obtain a model that correctly 

identifies Norwegian spruce, the model have to be trained on different samples of 

this specie in order to account for the natural variations in the sample. Furthermore, 

the NIR instrument can be said to have the capability to also measure at least one 

component in Norwegian Spruce, although this component was not identified in this 

experiment. 

2.3 MOISTURE STABILITY OF THE SAMPLE

The moisture content of wooden biofuels is one very important parameter, both when 

the biofuel is utilised (burned) and when it is purchased. NIRS measurements of water 

can perhaps be said to be the most common application of NIR spectroscopy, and it 

seems likely to assume that a reliable measurement can be obtained also for wooden 

biofuels. However, one elementary issue has to be addressed. Since a wooden sample 

with a moisture content of about 50 % is very far away from equilibrium with air during 

any normal circumstances, the sample will dry at any time and anywhere. This means 

that the sample has to be handled with some care, so that the reference measurement 

and the NIR measurements actually represent the same moisture content. A simple 

experiment was performed in order to evaluate the evaporation speed of water from a 

piece of spruce board.

The piece of board had a surface area of approximately 560 cm² and a volume of 

about 480 cm³. This piece of board is perhaps 5–10–fold larger than the average wood 

chip size, which means that the relative water loss rate of wood chips is higher than in 

this study. The piece of board was left to soak in water for one night, and the following 

day the piece of board was weighted seven times at approximately one hour intervals. 

During the time between weighting, the board piece was allowed to dry in room 

temperature (approx. 22 °C), representing a typical laboratory measurement scenario. 

Prior to the soaking, the board piece was weighted and this weight was used as dry 

weight in the moisture content calculations. The reason for not drying the board piece 

in an oven, which is the common procedure when determining the dry weight, was a 

concern that the high temperature would alter the spectral features obtained from the 
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board itself. The moisture content of the board as a function of drying time is shown in 

figure 2.5.

Figure 2.5. The moisture content of a piece of board as a function of the 

drying time in a normal indoor climate.

It is perhaps a matter of definition and sample handling procedure whether or not the 

evaporation rate significantly affects the moisture content measurement. However, 

NIR spectroscopy is a very effective way to measure water, which suggests that any 

errors in the reference measurement could be significant. Based on the results in figure 

2.5, the reference measurement and the NIR measurement should take place within 

a time frame of minutes rather than half an hour. In particular when considering the 

surface to volume ratio of the board piece in comparison to that of an average size 

wood chip, it seems appropriate to suggest that the sample should be weighted either 
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directly before or directly after the NIR measurement, directly meaning at least within 

ten minutes. 

However, it should be pointed out that moisture in wood can be separated into 

two groups, depending of the place within the fibre structure that the water is located. 

When the water is located within the straw–like structure of the wood–fibres it is 

called “free water”. The remaining water is bound in the walls of the fibres and, thus, 

referred to as “bound water”. When the free water has evaporated the remaining water 

is essentially bound water, and this moisture content is called the “fibre saturation 

point” According to a number mentioned in Rosner et al., 2009, this point corresponds 

to a moisture content of 35–37 % in Norwegian spruce. In this study no further efforts 

were made to confirm that these results regarding the evaporation rate, obtained on a 

sample soaked in water, would also apply to samples of “green timber” (i.e. freshly cut 

timber). However, if the moisture content of the sample is manipulated by adding fresh 

water, it is advisory to perform the spectroscopic and reference measurement in an as 

narrow as possible time frame. 
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3. Distinguishability between common tree 
species

From the point of view of utilising wooden fuels for energy production, one important 

parameter is without doubt the energy content. It was earlier suggested that the energy 

content of wooden bio fuels is directly dependent on the composition of the fuel, i.e. 

from which specie and from what part of the tree the fuel comes from. The following 

study was conducted in order to evaluate the possibility to distinguish between “dry” 

samples of birch, pine and spruce. 

3.1 EXPERIMENTAL SETUP

The measurements were carried out on three roughly one meter long board pieces 

of birch, spruce, and pine. The spectra were collected at randomly selected locations 

of the board, covering the length of the board. Each spectrum consisted of 32 

coadded scans. The spectrometer was allowed to stabilise for one hour prior to the 

measurements. After this, ten spectra were collected from each board, one board at a 

time. In order to reduce the influence of any time dependent factors, five more spectra 

were collected from each board after the first series of measurement. Thus, 45 spectra 

were collected for mathematical analysis, i.e. 15 from each board and specie. The 

average spectrum from each specie is shown in figure 3.1.
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Figure 3.1. The average spectrum of birch, spruce, and pine computed from 

15 spectra collected from three board pieces.

3.2 PRINCIPAL COMPONENT ANALYSIS

A visual inspection of figure 3.1 suggests that the spectrum from spruce and pine are 

very similar to each other, whereas birch being a hardwood differs somewhat from the 

two conifers. A PCA was performed on mean centred second order derivative spectra in 

the region of 901–1301 nm. The derivative used was a 21 point second order Savitzky–

Golay derivative. Figure 3.2 shows the second principal component plotted against the 

first principal component. One important conclusion that can be drawn from figure 3.2 

is that spruce could not be distinguished from pine. This result is perhaps in conflict 
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with some findings in the literature (Arshadi et al., 2007), but one explanation might 

be that the boards from which the spectra were collected had been stored for some 

time already. Therefore the spectra could perhaps be said to lack the information about 

volatile compounds, and the information thus limited to cellulose and lignin content. 

Figure 3.2. The second principal component plotted against the first principal 

component. Results from PCA analysis of spectra collected from three 

different wood species.

According to figure 1.2, the birch board was fairly homogenous, and the spectra from 

birch can readily be distinguished from spectra from pine and spruce. The figure also 

shows that the spruce board was homogenous in comparison to the pine board. These 

observations can also be said to coincide with a visual evaluation of the boards. The 
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cluster of the spruce spectra falls within the cluster from the pine spectra, and in this 

sense it is impossible to distinguish spruce from pine. On the other hand, although the 

information in the spectra from spruce and pine appears to be the same, the inhomo-

geneity of the pine board makes some spectra much more likely to be from pine than 

from spruce. However, since the intention was to obtain quantitative measurements 

utilising PLS models, the results from the PCA cannot be seen as conclusive. Among 

other things, additional components in the model might accommodate for specie– 

distinct features.

3.3 PLS MODEL REGRESSION

A PLS–regression was also performed on the spectra. The PLS–model predictions of 

the training data set are shown in figure 3.3. In the regression of the PLS models the 

presence of a specie of wood was given the quantitative value 1, and the concentration 

of the other species was set to zero. The model regression was performed on mean 

centred quantitative values and the spectral pre–treatment was the same as in the 

PCA–analysis. The calibration model for birch included two PLS components, which 

was sufficient to explain 99.6 % of the variations in the training data. The models for 

spruce and pine needed four PLS components to achieve 98 % variance capture. As can 

be seen, the model for birch can easily identify the spectra from birch. On the other 

hand, the spruce and pine models are interconnected in the sense that lack of pine is 

an indication of spruce, i.e. the models mirror each other.
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Figure 3.3. PLS model predictions of the composition of the spectra in the 

training data set. A value of 1 indicates that the spectra comes from the specie 

in question, otherwise the value should be zero.

Whereas the applicability for this information at present is not known, it was evaluated 

if the models, for which the prediction results of the training data set are shown in 

figure 3.3, could identify the species correctly when combined with a filtering step. The 

filter that was used for this purpose was a simple threshold filter, i.e. if the value of 

the model prediction exceeds a threshold value, the specie has been identified and the 

number one is returned from the filter. Similarly, if the model prediction falls short of 

the threshold value, the specie is not identified in the spectra and the filter returns the 

value zero. The results from this filtering step are shown in figure 3.4. In this figure, the 

threshold values were set to 0.5, 0.7, and 0.4 for birch, spruce, and pine respectively.
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Figure 3.4. Filtered PLS model predictions of the composition of the spectra 

in the training data set. A value of 1 indicates that the spectra comes from the 

specie in question, otherwise the value should be zero.

Whereas the results in figure 3.4 shows a perfect prediction of every sample or spectra 

in the training data set, it was decided that the models should also be validated 

against data detached from the model regression, i.e. against a validation set. For this 

purpose additional spectra were collected from three boards from the three species. 

These boards were not the same ones that were used for the model regression, and the 

collection of the spectra took place one week after the collection of the training data 

set. Thus, this experiment aimed to verify whether or not the NIR spectrometer could 

be used for identifying boards from birch, spruce and pine. From each board 15 new 

spectra were collected in a similar manner to the training data set. The models were 
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applied on these spectra, and the results are shown in figure 3.5.

Figure 3.5. PLS model predictions of the composition of the spectra in the 

validation data set. A value of 1 indicates that the spectra comes from the 

specie in question, otherwise the value should be zero.

According to figure 3.5, birch is the only specie that can be said to be successfully 

identified in the model validation. Because the results were poorer than expected, 

a PCA was performed on the validation set. Figure 3.6 shows the result from this 

calculation. As can bee seen, the results are to some extent similar to the ones obtained 

from the PCA of the training data set (shown in figure 3.2), in the sense that birch 

and spruce forms separate clusters that indicates a certain level of homogeneity, 

whereas the pine spectra forms a much more widespread pattern. This suggested 

that the somewhat poor results from the PLS model validation was not due to faulty 
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measurements as such, but that the training data was insufficient in order to obtain a 

reliable model. 

Figure 3.6. PCA results from the validation data set, with the second principal 

component plotted against the first principal component.

A PCA was also performed on the full spectral set, i.e. the combination of training data 

and the validation data. This analysis showed that 95 % of the variations in the two 

data sets could be explained with the first two principal components. Figure 3.7 shows 

the result from this computation. As can bee seen, the results are basically the same as 

for the separately performed PCA of the training data set and the validation data set. 

Thus, it can be concluded that the observations that were made from these analysis are 

still valid. 
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Figure 3.7. PCA results from the combination of the training data set and the 

validation data set, with the second principal component plotted against the 

first principal component.

As a final investigation in the present study of differentiation between three species, 

PLS models were computed and validated on combinations of the original training 

data and validation set. The training data set for this study was based on ten spectra 

from each specie from the original training data set, and ten spectra from the original 

validation data set. The remaining spectra were used for model validation. Thus, the 

models were based on 60 spectra and the validation carried out on 30 spectra. With 

two PLS components for the birch PLS model, 99 % of the variations in the training 

data was explained. In the case of spruce and pine, six PLS components yielded into 
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91 % and 92 % explanatory levels. The pre–treatment of the spectral and quantitative 

information was carried out as previously described. The model validation results 

are shown in figure 3.8. Based on these results it seems appropriate to assume that 

the NIR–instrument in question is capable of identifying the three different species, 

provided that there is enough calibration data available. Thus, it should also be 

possible to determine the composition of a mixed sample, although the calibration 

process in order to obtain reliable measurements for this application probably have to 

be considerable more rigorous than in the present study. 

Figure 3.8. PLS model validation results. The quantitative value 1 indicates 

that the spectra originates from the specie in question, otherwise the value 

should be zero.
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Regardless of whether the information displayed in figure 3.8 should be seen as 

successful implementation or not, some observations can be made. Firstly, the type 

of filtering used on the results displayed in figure 3.4 can not be directly applied 

to mixtures of wood, which makes it an infeasible approach for wooden biofuel 

measurements. However, figure 3.8 indicates that a quantitative and reliable PLS 

model might also be obtainable. Secondly, if fresh pine and spruce forms clear and 

separated cluster on the second PC vs. first PC (Arshadi et al., 2007), these results, 

in combination with the results from this study, indicates that a significant change 

in the spectra will occur during the seasoning of the timber. Consequently, if the fuel 

at the time of measurement contains various amounts of volatile substances, the 

mathematical model that is used to predict the fuels properties have to be robust to the 

changes in these substances as well. Therefore it can perhaps be said that this study 

answered some questions, but also gave rise to new factors to be considered.
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4. Measurement of the moisture content

As earlier stated, the moisture content is perhaps the most important parameter 

when defining solid biofuel properties. As a reminder, the moisture content is in 

this study defined as water to total weight ratio. However, regardless if the moisture 

content is defined as the ratio of water to total weight, or water to dry weight, the 

reference measurements can be carried out with basic laboratory equipment, i.e. 

weighting–drying–weighting. On the other hand, from the NIR measurement point 

of view moisture content is perhaps not an uncomplicated parameter. Basically the 

signal received with NIR spectroscopy should contain the information about how many 

water molecules the beam has encountered before reaching the detector. The number 

of water molecules the beam will interact with before reaching the detector has to be 

dependent on the volumetric density of the water in the sample and the length the light 

travels through the sample before it is reflected back to the detector. The moisture 

content as a parameter is dependent on the mass, and therefore also on the density, of 

the dry substance. The question is how much the density of the dry substance affects 

the NIR measurement of water. 

It can be assumed that the different densities of solid biofuels, or in this case 

common Finnish tree species, will affect the measurement. For a given volumetric 

water concentration, a fuel with a low density will have a higher moisture content 

than a fuel with a high density. In other words, if the NIR signal is equivalent to the 

amount of water in the sample, some precautionary steps are needed when attempting 

to measure the moisture content of fuels with different densities. An additive effect 

can also perhaps be expected with the NIR measurements based on the following 

reasoning. It could be assumed that the light travels a longer distance in a wood with 

low density, before being reflected back to the detector. This would give a stronger 

water absorbance in the spectra and add to the effect from the density dependent 

definition of moisture content. 

The measurements presented in this section where performed on a piece of board 

and can therefore be seen as a considerable simplification compared to measurements 

on wood chips and various forms of wooden biofuel materials. Perhaps this study can 
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be said to represents a reasonable “best case scenario”, or the simplest experimental 

setup for NIR spectroscopic measurements of moisture content in solid biofuels. 

However, since the board piece by no means should be described as a homogenous 

background, a PLS model for the moisture content has to be able to account for 

spectral features arising from the board piece itself. Furthermore, it can be assumed 

that the water is not entirely homogenously distributed in the board piece, due to a 

supposed local variance in hygroscopic nature of the wood. Another potential issue is 

concentration gradients arising from the surface evaporation. It can be assumed that 

if the water is uniformly spread in the body at the time when evaporation starts, there 

can be concentration gradients between the surface and the inner parts of the sample. 

4.1 EXPERIMENTAL SETUP

The NIR spectroscopic measurement of moisture content was carried out on the same 

piece of board as in the study described in section 2.3. The basic approach was to 

soak the board piece in water for one night, and allow it to dry in room temperature 

after this. During the drying time the board piece was weighted several times, and for 

each weighting 10 spectra were collected at different locations on the board piece (five 

from each side). Each spectrum consisted of 32 co–added scans, and the integration 

time was 0.16 seconds. The spectra were collected from the region 905–1683 nm, 

and recorded at a 3 nm step size. Altogether 180 spectra were collected for analysis, 

and the moisture content of these samples ranged from 4 to 29 %. However, it 

should be pointed out that the moisture content values given in this study does not 

fully agree with the definition of moisture content, because the board piece was not 

dried according to standards (e.g. ISO 287:2009) in order to obtain the dry weight. 

Instead the dry weight of the sample was considered to be the weight of the sample in 

equilibrium with the indoor air at the time of the measurements. This approach was 

taken due to a concern that the heating of the sample in an oven, in accordance with 

standard measurement methods for moisture content, would affect the NIR signal 

from the board piece itself. After the study described here was completed, the board 

piece was dried for 2 months in an exicator. The dry weight measured after this period 

was 4 % lower than the one that was used to produce the data given in this report. 
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4.2 PRINCIPAL COMPONENT ANALYSIS

The first evaluation of the measurements was done with PCA. For the PCA the whole 

measured wavelength region was utilized, and the only pre–processing method was 

mean centring. As earlier indicated, the spectra representing one level of moisture 

content did vary significantly from at least a visual point of view. In addition, it can 

be said that as the moisture content decreased, the relative discrepancy between 

spectra representing a single moisture content value increased. This as a direct result 

of that the relative influence of the background matrix increases as the water features 

decreases in magnitude. Figure 4.1 shows three spectra, all of which represent the 

same moisture content (29 %). According to the figure, the absorbance is reaching 1, 

and severe nonlinearities were expected. However, the PCA on the 180 spectra showed 

that 95.8 % of the variations could be explained by the first PC, and 4 % with the second 

PC. Thus, 99.8 of all variations were explained with only two PC. Perhaps it can be 

assumed that in this case the first PC can be directly related to the water content and 

the second mainly with features arising from the inhomogenity of the board piece.
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Figure 4.1. Absorbance spectra collected from different positions on a board 

piece when the moisture content was approximately 29 % (w/w).

The traditional PCA score plots will not be shown here. Instead conclusions are based 

on a plot consisting of the scores of the first PC plotted against the moisture content. 

This data is shown in figure 4.2. As can be seen from this plot, the scores are fairly 

widespread for any given moisture content level. This indicates either different water 

concentrations in different parts of the board piece, or that the location dependent 

properties of the board piece alter the signal significantly. Either way, this irregularity 

will make PLS modelling more complicated. It can also be said that if there is local 

variations of the moisture content in the board piece, the intended strategy for PLS 

model regression will force the model to ignore these variations. This would in turn 

limit the accuracy of the model too some (presently unknown) extent. 
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Figure 4.2. Scores on the first principal component plotted against the 

moisture content of a piece of board. The plot comprises 180 spectra at 18 

levels of the moisture content.

According to figure 4.2, the scores on PC 1 are close to constant for moisture contents 

below 20 %. This could indicate that it will be difficult to measure moisture content 

below this value, using the same integration time as for the higher moisture contents. 

Because the scores are almost constant for values below 20 %, the relationship between 

absorbance and moisture content also becomes highly nonlinear. Therefore, the 

regression of PLS models on data as displayed in figure 4.2 will result in a number of 

PLS components that are relevant only because of the nonlinearity, i.e. are needed to 

explain the nonlinearity. Thus, it can be scrutinised what approach should be taken in 

order to facilitate this nonlinearity in the model. The easiest method is to allow a model 
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with a high number of PLS components. This approach requires no extra effort in the 

regression of the model. However, although it is not readily quantifiable or verifiable, 

it seems appropriate to suggest that the higher the number of PLS components that are 

required the less robust the model will be to spectra features that are not accounted for 

in the training data, but that potentially could arise in prediction spectra.

4.3 PLS MODELS REGRESSION, AND METHODS TO ACCOUNT FOR NON–LINEARITY

If an attempt to decrease the number of PLS components needed in the PLS models 

predicting the moisture content seems as a favourable approach, there are at least 

two fairly easily implementable options. The first one is to create several separate 

calibration models, covering different moisture content intervals, in which the 

relationship between absorbance and moisture is sufficiently linear. The downside 

with this approach is that the training data set for each model will decrease in size, 

which in one sense is a waste of available information and might reduce the robustness 

of the model. Again, no clear values can be given to how the size of the training data 

set affects the quality of the PLS model, but it seems reasonable to suggest that, as 

a rule of thumb, a larger training data set should make the model more robust and 

thereby more accurate. The second approach is to transform the quantitative data, 

in order to make the relation between the quantitative value, i.e. the transformation 

of the moisture content, and the spectral response linear. Figure 4.3 shows a transfer 

function that was used in order to evaluate the potential benefits of a linearization. 

This transfer function was obtained by making a least squares function fit between the 

scores on the first principal component and the moisture content values. The function 

represents a linear relation up to 20 % moisture, and an exponential relationship is 

used for values above 20 %. The parameters for the two functions were obtained by 

minimizing the sum of squared errors. 
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Figure 4.3. Scores on the first principal component plotted against the 

moisture content of a piece of board. The plot comprises 180 spectra at 18 

levels of the moisture content. The solid line is represents a continuous 

function regressed by means of minimizing the sum of squared errors.

In order to obtain an understanding of the best method to deal with the non–

linearity issue, PLS models were regressed for three possible configurations. In 

these regressions the models were trained on 180 spectra from 18 different moisture 

contents levels. The whole spectra from 905 to 1682 nm was utilised, and the only pre–

treatment of the spectra and the moisture levels was mean–centering. The configura-

tions were that one model was regressed on the whole moisture range, one model was 

regressed on the linearised moisture content values, according to the transfer function 

shown in figure 4.3, and the last configuration comprised two separate PLS model 

regressions, one on spectra representing moisture content levels below 20 %, and 
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one on spectra representing moisture content levels above 20 %. The results for the 

first configuration, i.e. a model regressed on all 180 spectra and the original moisture 

content levels, is shown in figure 4.4. 

Figure 4.4. Actual vs. predicted moisture content levels in the training data 

set for a model regressed against moisture content levels ranging from 4 to 

29 %. The results are shown for a model with seven PLS components.

According to figure 4.4, a model with 7 PLS components can describe the relationship 

between spectral features and moisture content levels with reasonable accuracy, 

although the accuracy needed on the other hand is very much dependent on the 

intended application. It can also be suggested that allowing the PLS–regression itself 

to deal with the non–linearity issue seems to be a satisfactory method. However, these 

results represents only predictions within the training data set, and the accuracy have 

to be determined with a separate validation data set. Figure 4.5 shows the results 
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for the model regressed against linearised moisture content values. As was earlier 

mentioned, and as can be seen from figure 4.3, the variance of the transformed 

moisture content representing values lower than 20 % is very small. The effects of this 

can be seen in figure 4.5.

Figure 4.5. Actual vs. predicted moisture content levels in the training data 

set, for a model regressed against linearised moisture content levels 

representing original values from 4 to 29 %, after retransformation of the 

moisture content values. The results are shown for a model with two PLS 

components. The original PLS model predictions on the linearised, i.e. the 

transformed, values are also shown.

There are some conclusions that can be drawn from figure 4.5. There appears to be 

some benefits with this method of linearization for higher moisture content values, 

in particular when 25 % is exceeded. Comparing figure 4.5 and 4.4 shows that the 
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predictions are more consistent for the model regressed on linearized moisture values. 

Furthermore, the more accurate predictions are obtained with a model with only two 

PLS components. However, at values below 20 % the model or method is useless. This 

result can be contributed to the very small changes in the values obtained from the 

transfer function for values below 20 %, as illustrated in figure 4.3. As can be seen from 

figure 4.5, the PLS model predicts the low linearized values fairly well, but the errors 

are multiplied by a factor of approximately 100 with the transfer function, resulting 

in a worthless method. It would be possible to increase the variance for values below 

20 % by increasing the angle of the line describing the linear part of the relationship, 

but then the relationship between the first PCA and the transformed values would no 

longer be linear and linearization in this sense less powerful. Thus, this approach for 

linearization is a method of interest only if it is used in the regression of a model that 

describes moisture content values above 20 %. However, with this limitation in place, a 

reasonable model can be obtained already with only two PLS components.

The third and final configuration that was evaluated was a two model approach, 

one for concentrations below 20 % and one for concentrations above 20 %. The results 

are shown in figure 4.6. As earlier discussed, the robustness of the models might be an 

issue but, as can be seen from the figure, the predictions of the moisture in the spectra 

of the training data set are fairly accurate. Based on the correlation and the standard 

error obtained with this approach, this approach seems like the best alternative from 

the three configurations studied. However, this result has to be validated before the 

final conclusions can be drawn. It is perhaps no surprise that decreasing the moisture 

content interval that the model has to account for, increases the accuracy of the 

predictions within the training data set. The question is how the decrease in the size of 

the training data set, compared to using all data for model regression, affects the model 

robustness. Furthermore, if several models are to be utilised for the measurement, 

there has to be an approach that determines which prediction will represent the actual 

measurement result, i.e. which model should be used. Therefore a validation is needed 

in order to establish the best approach. However, some conclusions can be drawn 

already from this study. Linearization implemented as in this study is to be used, 

if used at all, only at higher moisture content levels, i.e. when the spectral features 

are dominated by water. It might be favourable to use two calibration models when 
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covering the range from 0 to 30 % moisture content, but a later model validation, 

among other things, will have to be conducted before a conclusive statement can be 

made. 

Figure 4.6. Actual vs. predicted moisture content levels in the training data 

set using two separate models, one for moisture content levels below 20 % 

and one for levels above 20 %. Seven PLS components were used in both 

models. The RMSEC is calculated as if the predictions were made with one 

single model.

4.4 SELECTION OF PLS MODEL PARAMETERS AND PRE–PROCESSING METHODS

The following section illustrates the procedure carried out in order to get an “optimal” 

PLS model for moisture content measurement. The word optimal is to some extent 

an exaggeration, because the process was carried out manually and only about 50 
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models were calculated, whereas the number of possible regression setups is, from a 

manual approach point of view, almost unlimited. The methodology used and the best 

model regression setup found can, as such, not be perceived as a generally applicable 

method or truth, because all applications are unique. However, the data shown can 

serve as an example on the importance of finding the proper model parameters and 

pre–processing methods. The PLS models that are characterised in this section were 

regressed on the spectra collected as described in section 4.1. In order to validate the 

models the piece of board was soaked in water one more time, and 160 new spectra 

were collected for 16 new moisture content levels the same way as described in section 

4.1. The start point for this study was a model regressed on the whole spectral region 

collected, and with no pre–treatment. The predictions of the training data set and the 

validation data set are shown in figure 4.7.
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Figure 4.7. Actual vs. predicted moisture content levels in the training data 

set and the validation data set for a model with no data pre–treatment and 

utilising the whole collected spectral region.

As can be seen from figure 4.7, the predictions on the training data set are fairly 

accurate already for the “raw” data with no pre–treatment. However, this is certainly 

not the case for the predictions of the validation data set. Although some correlation 

exists, a measurement with this accuracy would probably be of little interest for 

most applications. On the other hand, no skilled user of NIR–spectroscopy would 

be content with a calibration like this. Perhaps the two most important conclusions 

that can be drawn from figure 4.7 are that the task at hand is by no means trivial, and 

that the validation data seems to be impaired by a systematic deviation compared 

to the training data. One explanation for this might be that there was a significant 
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dark coloured fungal growth occurring on the board piece during the collection of the 

validation data set, which certainly had some impact also on the spectra collected.

Figure 4.8. The root mean square error of calibration, the correlation 

coefficient squared, and the root mean square error of prediction for 37 PLS 

models regressed and validated on the same data, but with different setups on 

the model regression parameters and spectral pre–treatment methods.

The model regression setups that yielded in the information presented in figure 4.8 will 

not be presented in great detail. However, a brief description is needed. The dramatic 

improvement observable for the first and second regression (the regression shown in 

figure 4.7 is regarded as regression number zero) is obtained by first mean centring 

and then auto scaling the spectra. The moisture content values were mean centred 

as well. After this, the spectrum interval that the models regressions were performed 
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on was gradually decreased by omitting 4 wavelength points at a time from the high 

wavelength side. The effects of this action can be seen from regression number 3 to 

regression number 24. As can be seen, omitting the noisier portions of the spectra 

improved the RMSEP from 6.6 to 4.7 %. However, as was the case also for the other 

models presented in figure 4.8, the RMSEC was not significantly reduced by altering 

the calibration interval, or by any other pre–treatment methods for that matter. 

Figure 4.9. Actual vs. predicted moisture content levels in the training data 

set and the validation data set for a model with mean centring and a second 

order derivative as pre–treatment.

The data from regression 25–30 represents results obtained with a first order 

Savitzky–Golay derivative at different window sizes and polynomial orders. The main 
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change when using derivative as pre–treatment is found in the correlation values. 

This is particularly true for regression 31–37, where a second order Savitzky–Golay 

derivative was tried out for a second order polynomial with different window sizes. 

On the whole, the use of the derivative as pre–treatment did not improve the RMSEP 

that significantly, i.e. from 4.7 % to 3.8 %, but since it was an improvement that also 

increased the correlation, it was decided that mean centring combined with a second 

order derivative will be the standard pre–treatment for future model development. 

Figure 4.9 shows the predictions of the training data set and validation data set, for 

a model regressed with mean centring and second order derivative as pre–treatment 

(regression number 35 in figure 4.8). According to the results from section 4.3, there is 

a potential for model improvement by creating several models where each model only 

describes a portion of the measured moisture content interval. It was also suggested 

that a method of linearization could be of interest, provided that it was performed on 

a narrower moisture content interval. Thus, this was the subject of further investiga-

tions.

 

4.5 LOCAL PLS MODELS AND LOCAL LINEARIZATION

The starting point for the evaluation of the usefulness of local PLS models, for different 

portions of the moisture content interval, was a model regressed on mean centered, 

second order Savitzky–Golay derivative spectra. As concluded in the previous section 

the RMSEP for this model was 3.8 %. However, for the purpose of comparison of 

local models to the macro model, the RMSEP was recalculated treating the validation 

sample at approximately 5 % moisture content as an outlier. As can be seen in figure 

4.9 this sample was clearly an outlier. Thus, the measurement accuracy that the local 

models could be compared to is 1.48 %, obtained after excluding the outlier, rather 

than 3.8 % as previously reported. However, as can be seen from for instance figure 

4.9, the previously utilized validation data set had only a few validation points below 

20 %, and one of which was an outlier. In order to evaluate the accuracy for local 

models below 20 % an additional validation data set was collected. The procedure was 

the same as for the earlier data set, i.e. the board piece was soaked in water over night, 

and new spectra were collected while the board piece was drying. Thus, the evaluation 
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of the usability of local PLS models was conducted on a validation data set, that was a 

combination of the original and the new validation data set.

The new validation data set collected contained only moisture content levels 

below 20 %, and the models regressed for higher moisture content values were 

therefore in practice validated against the first or original validation data set. However, 

for the purpose of further investigations, the regression and validation data set can be 

described as follows. The regression data set in the following calculations consist of 

200 spectra, representing 20 different moisture content levels. These spectra are from 

the original regression set (180), and spectra from the first validation data set that 

represent moisture contents below 20 %. The validation data set consist of 320 spectra, 

representing 32 moisture content levels. These spectra come from the original or first 

validation data set (130), representing moisture content levels above 20 %, and the new 

validation data set (190 spectra). A model regression and validation was performed 

with the above described training data set and validation data set. The pre treatment 

utilized was mean centering, a second order Savitzky–Golay derivative with a second 

order polynomial and a 13 point window size, and auto scaling. The results from this 

regression and validation are shown in figure 4.10.



50

R E P O R T

Figure 4.10. Actual vs. predicted moisture content levels in the training data 

set and the validation data set for a five PLS components model with mean 

centering, second order derivative and auto scaling as pre–treatment.

The first moisture content interval split was performed similar to what reported in 

section 4.3, i.e. two separate models were regressed, one for moisture content levels 

above 20 % and one for levels below 20 %. Thus, the regression data set for the lower 

range model contained 110 spectra and for the higher range model 90 spectra. The 

validation data set for the lower range model contained 190 spectra and data set for the 

higher range 130 spectra. The RMSEC for the model below 20 % was 1.16 % with 3 PLS 

components, and for the model above 20 % the corresponding error was 0.48 % with 4 

PLS components. Given in the same order, the RMSEP for the two models were 2.69 % 
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and 0.95 %, respectively. The results from the two models were combined, and new 

RMSEC and RMSEP were computed representing the whole range of moisture content 

measured. The results from the combination of two PLS models are shown in figure 

4.11.

Figure 4.11. Actual vs. predicted moisture content levels in the training data 

set and the validation data set for a two local PLS models, the one above 20 % 

utilises 4 PLS components and the one below 20 % moisture content utilises 

3. Mean centering, second order derivative and auto scaling was used as pre–

treatment. The accuracy is computed for the combined predictions.

The figure 4.11 visualises what the RMSEP values given above already stated: The 

use of two separate calibration models significantly improved the accuracy on the 
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measurements above 20 % moisture content level, but did not affect the accuracy 

below 20 % to any greater extent. It should be pointed out that the validation data 

for the model below 20 % was obtained as a separate measurement series, collected 

a few days after the first validation data set. As previously mentioned, the board 

piece became gradually darker during the measurements due to fungal growth. This 

might be an explanation to why the model fails to predict the concentrations in the 

second validation set with the same accuracy as for the first set. If the fungal growth 

significantly affected the spectra of the second validation data set, and the model was 

regressed on spectra with very little influence of fungal growth, the model cannot 

account for features that were not included in the training data. As a consequence, 

it can not be evaluated if the use of local models improved the measurement below 

20 % at this point. On the other hand, the improvement above 20 % was significant, 

and therefore one more interval split was performed. Two new models were regressed 

for the interval above 20 %, one on spectra ranging between 20 to 25 %, and one on 

spectra above 25 %. The results from the model regressions and validations are shown 

in figure 4.12.
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Figure 4.12. Actual vs. predicted moisture content levels in the training data 

set and the validation data set for a two local PLS models, the one above 25 % 

utilises 3 PLS components and the one below 25 % moisture content utilises 

4. Mean centering, second order derivative and auto scaling was used as pre–

treatment. The accuracy is computed for the combined predictions.

As can be seen from figure 4.12, the RMSEP when two models were utilised in 

the region above 20 % was 0.91 %. Although this might seems like a significant 

improvement to the RMSEP of 2.2 % given in figure 4.11, the use of two separate 

models in this region did not improve the accuracy noticeably. As stated above, 

the RMSEP for the single model above 20 % was 0.95 %, which means that the 

apparent reduction of the RMSEP by utilising two models actually originates from 
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excluding the validation data below 20 % moisture content level. However, it can be 

said that the RMSEP for the model above 25 % was 0.65 %, which can be seen as a 

significant improvement compared to the previously obtained 0.95 %. On the other 

hand, if a RMSEP for the measurement shown in figure 4.11 is calculated only for the 

measurements above 25 %, this error amounts to 0.56 %. Thus, it can be concluded 

that the use of two models in the region 20 to 30 % moisture content level can not 

be considered an improvement compared to using only one model. However, this 

result should not bee seen as a generally applicable conclusion, because every split 

in regression interval also implied a significant reduction of the training data set. 

Hence, it can be suggested that the use of local models can be recommended if there 

is sufficient training data available for each model. Therefore, as is the case in most 

applications, the accuracy that can be achieved is highly dependent on the amount of 

representative training data that is available.
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Figure 4.13. Scores on the first principal component plotted against the 

moisture content of a piece of board. The plot comprises 90 spectra at 9 levels 

of the moisture. The solid line represents the transfer function used in the 

linearization of the relation between spectral features (PC 1) and moisture 

content.

According to the findings in section 4.2, there might be some benefits with lineariza-

tion based on the scores of the first principal component, provided that it is performed 

on a sufficiently narrow portion on the moisture content interval. Therefore, it was 

investigated if the accuracy could be increased by in the region above 20 % moisture 

content by creating utilising a transfer function between the loadings on the first PC 

and the moisture content level. Figure 4.13 shows the scores on PC1 plotted against the 

moisture content level, and the exponential function that was used for linearization. In 
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the first regression, the model was based on the 90 available spectra and correspond-

ing linearized moisture content data. The model was tested against the validation data 

available for moisture content levels above 20 %, i.e. 130 spectra corresponding to 13 

moisture content levels. This regression produced a model with a RMSEP of 1.75 %, 

which is significantly higher than the RMSEP of 0.95 % obtained above 20 % with no 

linearization. 

One reason for the unsatisfactory result was the prediction errors in the lower 

moisture content region. In order to compensate for the small variance of the concen-

tration data in this region, the training data set was modified. A new training data set 

was created, in which the sample with the highest moisture content was included once, 

the sample with the second highest moisture content twice, and so forth. However, 

it should be pointed out that mean centering was used on the concentration data, 

which to some extent counteracted this procedure to put more weight on the low 

moisture content samples. This training data set consequently contained 450 spectra 

representing 9 moisture content levels. The results from the regression can be seen in 

figure 4.14. It was concluded, based on the RMSEP of 1.0 % obtained with this model, 

that the efforts to linearize the regression data this way were pointless. The accuracy 

obtained was the same as with no linearization, and therefore the whole approach as 

such can be seen as a failure. Thus, for future applications it seems as a favourable 

approach to use multiple local models for moisture content measurements, although 

selecting the correct model for the measurement will be an issue. Furthermore, a 

measurement accuracy of 1 % was obtained, which qualitatively can be described as a 

reasonable, or perhaps even excellent, accuracy when dealing with characterisation of 

wooden biofuels.
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Figure 4.14. Actual vs. predicted moisture content levels in the training data 

set and the validation data set for a model regressed on linearized moisture 

content values.
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5. Summary

In this report fundamental aspects of NIR spectroscopic characterization of wooden 

biofuels were evaluated. The attempt was to investigate seemingly trivial matters, such 

as heat generated by the light source and evaporation rate of water. As such, the results 

are of practical rather than scientific importance. Regarding the heating effect that 

the light source generates, the conclusion was that the impact was significant and that 

the time required to obtain a reasonable stability was in the region of one hour. Thus, 

it was suggested that the measurement head should be brought onto the sample as 

shortly as possible before the measurement begins and removed as quickly as possible 

after the spectra has been collected. Due to the short measurement time required to 

collect a spectrum, the effect of the heat generated by the light source can sufficiently 

be reduced by the proper handling of the measurement head. This investigation also 

showed that the evaporation rate from a wooden sample, which has been soaked in 

water to manipulate the moisture content, is in laboratory conditions high enough to 

advocate that the reference measurement is performed within minutes from the NIR–

measurement. The observed evaporation rate was approximately 1 percentage point 

per hour.

In order to increase the understanding regarding the capability of NIR 

spectroscopy for measurement of the energy content of mixtures of biofuels, the 

separability of spectra from birch, pine, and spruce was investigated. It was concluded 

that although the spectra obtained from one single specie had considerable variations, 

the instrument used was capable to differentiate between the three species. Thus, 

if species can be identified, the energy content, which basically is dependent on the 

composition of the fuel, should also be obtainable. The measurement of the moisture 

content was also investigated. One issue that emerged was the nonlinearity between 

the absorbance and moisture content. However, linearization as implemented in this 

study did not improve the measurement accuracy compared to regression against the 

original moisture content values. A method that showed some promising results was to 

create local calibration models for a narrower, and thus more linear, moisture content 

interval. This result might, however, be contradicted when measurement on a real 
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mixture of woodchips is carried out. It can be expected that the background matrix 

will be considerably more complex with wood chips from different parts of the tree 

and different tree species compared to the one arising from a board piece. Thus, it can 

also be expected that the demand for model robustness is higher when measuring on 

wood chips. The use of local models might reduce the stability of the models compared 

to using only a global model, since the local models will be based on fewer calibration 

points and thereby less information. Furthermore, the use of local models will also 

require a selection making process, in order to determine which prediction or model 

to use for a given sample. In this study the wavelength interval and pre–processing 

methods to use for the moisture content measurement were also investigated. The 

accuracy obtained was approximately 1 %, which can be described as a satisfactory 

accuracy for the intended end–application. 
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